
CITS5501 Java revision
Arran Stewart

2023-02

Introduction
Java is an object-oriented programming language developed by Sun Microsystems and now
owned by Oracle Corporation. It is designed to be platform-independent, meaning that
Java code can be written once and run on any system that has a Java Virtual Machine
(JVM) installed, regardless of the underlying hardware and operating system. Its syntax
is similar to that of C++.

Java code is normally compiled into bytecode. This is a low-level representation of code,
similar to machine code, which is designed to be executed by a virtual machine rather
than directly by the computer’s hardware. The original source code is translated into a
series of bytes representing machine-readable instructions.

Java is widely used for building enterprise applications, and the JVM is used in the
development of Android applications.

Useful texts. The text Objects First with Java: A Practical Introduction Using BlueJ
(Barnes and Kolling, 2016) provides a good introduction to the object-oriented paradigm
for beginning programmers using the Java language, and is available through the UWA
library. For more experienced programmers, Java in a Nutshell: A Desktop Quick
Reference (Evans and Flanagan, 2019) may be useful. The definitive reference on Java is
the Java Language Specification (Gosling et al, 2022).

For students already familiar with the Java language, we provide a brief refresher of
some relevant concepts here. It is not a complete reference; you should refer to the texts
mentioned above for that.

Java types and expressions
Java is a reasonably simple language (if somewhat verbose), and is statically typed. This
means that the types of variables are known at compile time. If a variable is declared
as holding a boolean, then it is impossible to assign to that variable a value of the
wrong type; the program simply won’t compile. This is in contrast to dynamically typed
languages like Python, where the type of a variable is only known at runtime, and can
change – it’s perfectly possible for one variable to be assigned a bool, then an int, then
a string. In this unit, you are expected to understand the difference between statically
and dynamically typed languages.

1

https://onesearch.library.uwa.edu.au/permalink/61UWA_INST/1vk1d8f/alma991076756802101
https://onesearch.library.uwa.edu.au/permalink/61UWA_INST/1vk1d8f/alma991076756802101

Java types are divided into two categories: primitive types and reference types. The
primitive types (discussed in the next section) are the boolean type and the numeric
types. The most important reference types, for our purposes, are class types, interface
types, and array types.

Primitive types
Java has eight primitive types, as follows:

Type Description

boolean Holds a ‘true’ or ‘false’ value
char Holds one Unicode character of 16 bits size.

They can be written as character literals,
which have single quotes around them (e.g.
char c = ’A’;).

byte Holds a signed integer of size 8 bits
(ranging from -128 to 127).

short Holds a signed integer of size 16 bits
(ranging from −215 to 215−1).

int Holds a signed integer of size 32 bits
(ranging from −231 to 231−1).

long Holds a signed integer of size 64 bits
(ranging from −263 to 263−1).

float Holds an ieee 754 floating point value of 32
bits size.

double Holds an ieee 754 floating point value of 64
bits size.

Java performs “widening” conversions between primitive types automatically. For instance,
an int can represent all the values a short can hold and more, so it is considered a
“wider” type. It’s therefore possible to assign a short value to an int variable, and Java
will perform the appropriate conversion automatically:

� �
1 short s = 99;
2 int i = s; // compiles with no issues� �
Note that Java does not automatically convert between booleans and numeric types, as
some other languages do. (For instance, in C, C++, and Python, an integer value of 0 is
considered equivalent to boolean “false”.)

2

Basic Java operators
Java expressions consist of variables and literals joined by operators. Java’s operators
are similar to those found in C++ (and for that matter, Python and many other modern
programming languages).

They include arithmetic operators (+, -, *, /, %), logical operators (&&, ||, !), and
relational operators (<, <=, >, >=, ==, !=).

One difference to Python is that Java uses symbols for its logical operators, whereas
Python uses words (“and”, “or”, and “not”). Another is that when the division operator
is used with two integers, it performs integer division: it returns another integral value,
not a floating point type. Thus, 10 / 3 == 3.

Be careful when using any of these operands with reference types. When the == operator
is used with reference types, it tests whether the operands refer to the same object or
array – it does not test the “equality” of two distinct objects or arrays.1

Java includes the somewhat unusual feature of non-short-circuiting logical operators.
The & operator implements non-short-circuiting “and”, and the | operator implements
non-short-circuiting “or”. When these operators are used, both operands get evaluated,
even if they don’t need to be. In the following example:

� �
1 bool b = false & someObject.someMethod();� �
the method someMethod gets invoked, even though we know the value of b must be false.

Special operators
Some other important Java operators are as follows.

Object member access (.) Given some object, the dot (.) operator lets you access its
fields and methods. E.g. "wibble".length() invokes the length() method of the
string "wibble".

Array element access ([]) Given an array, the [] operator lets you refer to a specific
element of an array (much the same as most other languages). Thus if arr is an
array, then arr[0] refers to its first element.

Method invovation (()) Given some method, putting parentheses after it (possibly
with arguments between them) will invoke that method.

Object creation (new) In Java, objects and arrays are normally created with the new
operator. So, for instance

� �
1 Queue myQueue = new Queue();� �

1In other words, when used with reference types, the Java expression obj1 == obj2 is not equivalent
to the Python expression obj1 == obj2; it is closer in semantics to the Python expression
obj1 is obj2.

3

will construct a new Queue object (used to represent a “first-in, first-out” queue).

Strings
Strings in Java are not a primitive type, but a reference type. String in Java is a class,
and follows the Java convention of having a “PascalCase” name (with an initial capital
letter).

Although String is a class, strings are treated specially in Java in several ways. One is
that they can be constructed using string literals, which are written using double quotes:

� �
1 String s = "abracadabra";� �
Strings are also immutable – a string value cannot be altered once constructed. (So in
this respect, they are different to an array of chars, where once the array is created, you
can, for instance, change the first character to something else.) For a mutable type which
allows you to construct strings, see the StringBuilder class.

Because they’re not primitive types, strings cannot be compared using the == operator.
When used on objects, == tells you if the left and right operands are the same object,
whereas we typically want to know if they hold equivalent strings. Instead, you need to
use the .equals() method to check for string equality:

� �
1 String s1 = "cat";
2 String s2 = "dog";
3 String s3 = "cat";
4 System.out.println(s1.equals(s2)); // prints "false"
5 System.out.println(s1.equals(s3)); // prints "true"� �
Strings can be concatenated using the + operator:

� �
1 String s = "abraca" + "dabra";� �
Strings are considered “wider” than any of the primitive types, so if you concatenate a
string and a number, the number is automatically converted to a string:

� �
1 String s = "agent " + 99
2 System.out.println(s); // will print "agent 99"� �
Objects are converted to strings by calling their toString() method.

Classes and objects
In Java, an object is a set of fields (which hold data) and methods (which operate on that
data). A class is a blueprint or template for creating objects.

4

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

A class to represent a point on a Cartesian plane might look like this:

� �
1 /** Represents a Cartesian (x,y) point */
2 public class Point {
3 // coordinates of the point
4 private double x, y;
5 // constructor
6 public Point(double x, double y) {
7 this.x = x; this.y = y;
8 }
9 // a method

10 public double distanceFromOrigin() {
11 return Math.sqrt(x*x + y*y);
12 }
13 }� �
Once a class is defined, we can use the new operator to instantiate objects of that class –
e.g. Point p = new Point(3.0, 2.0) would create a new Point object.

The null keyword is a special type of literal value in Java that represents nothing – the
absence of any object or reference. The null value can be assigned to variables of any
reference type:

� �
1 String s = null;
2 Point p = null;� �
Classes are the most important of the reference types supported by Java. A class in Java
may inherit from another class, using the keyword “extends”:

� �
1 import java.awt.Color;
2

3 /** a Cartesian point with colour */
4 public class ColouredPoint extends Point {
5 // colour of the point
6 private Color color;
7 // constructor
8 public ColouredPoint(double x, double y, Color color) {
9 super(x,y);

10 this.color = color;
11 }
12 // ... other methods ...
13 }� �
Inheritance allows programmers to reuse properties and behaviours from existing classes,
and build more specialized classes that inherit the properties and behaviours of a parent
class (it’s direct superclass).

5

If a class doesn’t explicitly inherit from some other class using the “extends” keyword,
then it automatically inherits from a special class called Object. Thus, every Java class
has Object as a (direct or indirect) superclass.

Arrays
Arrays are a special kind of object which can hold zero or more values of some type in
contiguous elements in memory. We will not need to directly use arrays much in this unit,
and will instead use classes from the Java Collections Framework, such as Set, List, and
TreeMap.

Interfaces
In Java, classes can only inherit from one other class, which is a significant restriction in
an object-oriented language. To ameliorate this, Java introduced interfaces. Like a class,
an interface lets a programmer define a new reference type. However, it is an abstract
type, containing no implementations for its methods; all it defines is the interface for the
type (hence the name).

For instance, an interface Shape might be defined as follows:

� �
1 public interface Shape {
2 double getArea();
3 double getPerimeter();
4 }� �
A Java class (or interface) can declare that it implements any number of interfaces, using
the “implements” keyword. For instance:

� �
1 public class Rectangle implements Shape {
2 double width, height;
3 double getArea() { return width * height; }
4 double getPerimeter() { return width * 2 + height * 2; }
5 // .. constructor and other methods omitted
6 }� �
Reference types versus primitive types
Reference types differ from primitive types in several important ways:

• Defining new types. It’s not possible to define new primitive types in Java. The
eight predefined types are the only ones possible. In contrast, programmers can
define as many new reference types (for instance, new classes or interfaces) as they
like.

6

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/doc-files/coll-overview.html

• Primitive types represent exactly one value; reference types may
represent zero, one or more. A Java int, for example, represents a single 32-bit
signed integer. But reference types are aggregate types that can represent zero or
more primitive values or objects. An array type like char[] represents a sequence
of primitive types; an array type like String[] represents a sequence of objects (all
of type String).

For classes, the values represented by the type are given names and are called fields;
our Point class above holds two double values and gives them the names x and y.

• Memory used. When you declare a variable of a primitive type, it always occupies
some fixed amount of memory that will be between one and eight bytes, and will
vary depending on the type. (A boolean occupies exactly one byte, a long eight.)
Reference types, on the other hand, often require more memory than that. The
memory is dynamically allocated when the object is created, and automatically
“garbage collected” when the object is no longer needed (e.g. because it goes out of
scope).

• How values are passed. When a value of some primitive type is passed to a
method, the method receives a copy of the value. (This is called “passing by value”.)
This means any changes made by a method to a parameter are not seen by the
calling method, since the called method operates only on a copy of the original. In
the following code –

� �
1 public static void addOne(int i) {
2 i += 1;
3 }
4

5 public static void main(String[] args) {
6 int j = 5;
7 addOne(j);
8 }� �
calling addOne() has no effect on the value of j.

Reference types, however, are passed “by reference”; this means that a called method
potentially has full access to the original object, and can mutate it just as the calling
method could. In the following code:

� �
1 public static void setFirstEl(int[] arr) {
2 arr[0] = 42;
3 }
4

5 public static void main(String[] args) {
6 int[] myarr = { 0 };
7 setFirstEl(myarr);
8 }� �

7

calling setFirstEl() does result in a change to myarr.

Sometimes it’s useful to be able to treat Java’s primitive types as if they were more like
reference types. For instance, the Collections Framework provides an ArrayList type
which we can use to represent lists of things; an ArrayList<Color> represents a list of
colours. But Java’s collections can only hold reference types2, not primitive types: trying
to declare an ArrayList<int>, for instance, will result in a compilation error. For each
primitive type, Java therefore defines a utility class which “wraps” that type. You can see
a list of these “wrapper” classes here. For convenience, Java will automatically convert
between a primitive type and its corresponding wrapper type; thus, one can write

� �
1 Integer i = 0;� �
instead of

� �
1 Integer i = new Integer(0);� �
Other reference types
There are a few other reference types we have not yet mentioned. Java’s enums are similar
to enums in Python or C, and allow a programmer to create a new type which consists of
a set of predefined constants.

Java annotations give programmers a way of attaching metadata to parts of a Java
program. An annotation could be used, for instance, to specify the author who created a
particular Java class. In CITS5501, we will make use of Java annotations provided by
the JUnit testing framework. One such annotation, @Test, allows us to mark particular
methods of a class as JUnit tests which should be executed by a test runner:

� �
1 import static org.junit.jupiter.api.Assertions.assertEquals;
2 import org.junit.jupiter.api.Test;
3

4 class ArithmeticWorks {
5 @Test
6 void additionWorks() {
7 assertEquals(4, 3 + 1);
8 }
9 }� �
Other useful Java features
Two features of Java you will likely find useful in the unit are generics and lambda
expressions. For a full discussion of these, you should refer to a Java textbook. But in

2This is a limitation of Java’s generic types.

8

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/doc-files/coll-overview.html
https://en.wikipedia.org/wiki/Primitive_wrapper_class_in_Java
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.python.org/3/library/enum.html
https://en.cppreference.com/w/c/language/enum
https://docs.oracle.com/javase/tutorial/java/annotations/basics.html
https://en.wikipedia.org/wiki/Metadata
https://junit.org
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html

brief:

• Java generic types are classes and interfaces that are parameterized over types. Similar
to the way a mathematical function, when supplied with appropriate parameters,
“spits out” a result, a generic type, when supplied with appropriate parameters,
“spits out” a new type.

HashSet<T> from the Java Collections Framework is an example of a generic type.
On its own, it doesn’t represent a type that you can directly instantiate as an object
in your program. But if supplied with an appropriate type parameter, it does. Thus
HashSet<String> could be instantiated with code like the following:

� �
1 HashSet<String> mySet = new HashSet<>();� �
(Java lets us omit <String> the second time it would appear, as the compiler is
able to infer the missing type from context.)

• A Java lambda expression is a concise way of representing an anonymous function.3
A simple lambda expression which takes two parameters and returns a result would
take the form:

(param1, param2) -> expression

For instance,

� �
1 (x, y) -> x+y� �
is a lambda expression which adds its arguments together. Types can be included
before the parameters, but need not be. The expression can be stored in a variable
or passed to a method.

Lambda expressions were introduced in Java 8, and are roughly equivalent to a class
with a single method (which we might call apply) – something like the following
(if we specialize the expression to Integers), but without needing a name like
MyLambda:

� �
1 class MyLambda {
2 public static Integer apply(Integer x, Integer y) {
3 return x + y;
4 }
5 }� �
But they are not exactly equivalent, and using lambda expressions generates bytecode
that cannot be interpreted by pre–Java 8 JVMs.

3Java lambda expressions are equivalent to lambda expressions in Python, C++, JavaScript, and Rust.
The first language to make use of lambda expressions was Lisp, in 1958.

9

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/doc-files/coll-overview.html
https://docs.python.org/3/reference/expressions.html#lambda
https://en.cppreference.com/w/cpp/language/lambda
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://doc.rust-lang.org/rust-by-example/fn/closures.html
https://en.wikipedia.org/wiki/Lisp_(programming_language)

Java programs
You should refer to a Java textbook for full details of how Java programs are constructed
and compiled.

In brief, however, Java programs consist of one or more Java files, which by convention
have a .java extension. A Java compiler (normally, javac) compiles each file into one or
more bytecode files, which have a .class extension.

A Java program consists of some set of interacting class definitions, where at least one
class has a main() method declared with the following signature:

� �
1 public static void main(String[] args);� �
There can be multiple classes with main() methods, providing multiple ways of invoking
the program.

References
• Barnes, David, and Michael Kolling. Objects First with Java: A Practical

Introduction Using BlueJ. 6th edition. Boston: Pearson, 2016.
• Evans, Benjamin, and David Flanagan. Java in a Nutshell: A Desktop Quick

Reference. 7th edition. Beijing, China; Boston, Massachusetts: O’Reilly Media,
2019.

• Gosling, James, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith,
and Gavin Bierman. The Java Language Specification. Oracle, August 31, 2022.
Available at https://docs.oracle.com/javase/specs/jls/se19/html/index.html.

10

https://docs.oracle.com/javase/specs/jls/se19/html/index.html

	Introduction
	Java types and expressions
	Primitive types
	Basic Java operators
	Special operators
	Strings
	Classes and objects
	Arrays
	Interfaces
	Reference types versus primitive types
	Other reference types

	Other useful Java features
	Java programs
	References

