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Overview

I Process for developing Alloy models
I More on modelling
I Facts and assertions
I “Small scope” hypothesis
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Review – Alloy signatures

We’ve seen that Alloy lets us declare that there are particular kinds
of things, using signatures (“sig”s) – for example

sig FSObject {} // there are file system objects

sig Animal {} // there are animals

sig Node {} // there are nodes in a data structure
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Alloy signatures

Alloy also has some signatures built in – for instance Int – and
others are available in standard library modules (for instance there is
a module util/sequence with useful signatures for modelling
sequences (list-like objects).
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Relations

We’ve seen that Alloy lets us declare that there are relations
between things.

sig Person { friends : set Person }

// People can have friends
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Relations

sig Person { friends : set Person }

// People can have friends

We can use relations to model things like

I containment – one sort of entity contains others
I labelling – for instance, we might state that computers have an

IP address, which acts as a sort of “name”
I grouping – we might want to single out objects which have

some common property (e.g. carnivores, which are animals, and
all have the property that they eat meat)

I linking – there is a link between objects in which they are
“peers” (rather than one “containing” the other)

. . . in fact, any sort of relationship between entities we want.
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Multiplicities

We can declare multiplicities for relations:

sig Node { next : lone Node }

// The node can have one 'next' Node

sig Dir { contents : set FSObject }

// directories have 0 or more objects they contain

one Phoenix extends Animal {}

// There is one Phoenix in the world
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Iterative approach to model design
A suggested approach to developing a model in Alloy is:

I Start by declaring the possible entities you want to talk about (sigs),
and add basic relations to show how they inter-relate.

I Start tightening up the model by adding explicit cardinalities, if you
haven’t already

I Use the run command to visualize the model
I Use predicates and scopes to narrow down what sort of

examples you want to see

sig Door {}

sig House { doors: set Door }

pred example() {

}

run example for exactly 2 House, 2 Door
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Iterative approach to model design

I Using the visualizer, we can see if our model specifications are
too loose (allow in undesired cases) or too tight (exclude
desired cases)
I Usually we’ll recognize specifications that are too loose because

we see “silly” examples that aren’t what we intended
I Often we discover specifications that are too tight because we

get no examples at all – we’ve overconstrained the model to the
point it’s contradictory

I If our specification is too loose, we can add additional
constraints to our model

I The typical way to do this is by adding facts
I Sometimes we may discover we also need to add additional

relations or sigs (see last week’s workshop for an example)
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Example fact

sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

sig File extends FSObject { }

// All file system objects are either files or directories

fact { File + Dir = FSObject }
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Facts vs assertions
A fact forces something to be true of our model – it is like declaring a “law
of the universe” for our model.

But we can also write assertions. An assertion claims that something must
be true (due to the rest of the model) – but it might be wrong.

In alloy, we use assert to write assertions, and the check command to see
if Alloy can find a counterexample – more on this in the workshop.

(Like run, the check command takes a scope to tell Alloy the maximum
size of the examples it should check.)

// The contents path is acyclic

assert acyclic { no d: Dir | d in d.^contents }

// Now check it for a scope of 5

check acyclic for 5
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Assertions

We can use assertions to state things that we think should be true –
we think they should follow from the rest of the model – but we’d
like Alloy to check.

Alloy checks by constructing many example “universes” based on
our model (up to a maximum size specified by the scope), and
looking to see if our assertions hold.
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Small scopes

Even if we specify small scopes (e.g. 5), the Alloy analyser will end
up checking many, many instances of our model.

For instance, suppose we have some entity (say, Person), and one
relation between entities (say, friend: set Person).

If asked to check an assertion, Alloy will look at all possible
examples with up to five Person entities.

There are 10 possible “edges” between Person entities
(5

2
)
2 , and

therefore 210 or 1024 model instances of size 5. (We ignore the
smaller size model instances.)

Once we start adding in more entities and relations, the number of
instances becomes much larger – often the Analyser will check
hundreds of thousands of instances to see if our assertions are true.
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Small scopes

So exhaustively checking even small-scope models takes quite a bit
of work; checking large scopes (e.g. scope 100) is often infeasible.

However, the “small scope hypothesis” suggests that for many bugs,
once can find examples of them by inspecting only a small scope,
exhaustively.

In other words: a high proportion of bugs can be found by testing a
model for exhaustively within some small scope.
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Small scopes

This idea was mentioned in passing in earlier lectures.

Often when we introduce a bug in code, a fairly small example will
suffice to find it.

If our code works for all small examples – and for some bigger
examples – then it’s probably okay.

(An exception to this is when we reach upper bounds on the size of
data structures.1

But even these could be discovered by deliberately using small-size
ints, which Alloy does.)

1See Joshua Bloch, “Extra, Extra - Read All About It: Nearly All Binary
Searches and Mergesorts are Broken”. In 2006, nearly all binary search
implementations were found to contain a bug when used on an array of size 231

(despite being “proved” correct; the proof assumptions were invalid.)
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Example fcts

Here, we declare additional constraints which must be true of any
possible “world”.

sig Employee {}

fact atLeastTwoEmployees {

#Employee >= 2

}

sig Manager {}

fact moreManagersThanEmployees {

#Manager >= #Employee

}
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Running the Alloy Analyzer

There are two main ways of using the Alloy Analyzer.

The run command asks the analyzer to construct examples of our
model – up to some maximum size – and try to find one which
satisfies conditions we specify.

For the check command, we specify some assertion which we think
should be true, and ask the analyzer if it can find any
counterexamples.

(They are a bit like opposites – run is asking for a case where our
condition is true, check for one where it is not.)
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The run command

The run command uses predicates, statements which can be true or
false, to filter the “worlds” we’re interested in.
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Alloy predicates

An example predicate:

pred hasSuccessor(n : Node) {

#(n.next) = 1

}
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Alloy predicates

pred hasSuccessor(n : Node) {

#(n.next) = 1

}

This says “this predicate is true if the Node we apply it to has
exactly one ‘next’ node”.

Predicates take zero or more arguments, and can be re-used in
multiple places in our model.

Predicates always evaluate to either “true” or “false” – you can
think of them as always having return type bool.
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Alloy predicates

Predicates contain constraints.

pred oneBeforeLast(n : Node) {

#(n.next) = 1

#(n.next.next) = 0

}

21 / 49



Alloy predicates

We could rewrite the previous examples as follows:

pred hasSuccessor(n : Node) {

one n.next

}

pred oneBeforeLast(n : Node) {

one n.next

no n.next.next

}

one just means “has cardinality one”, and no just means “has
cardinality zero”.
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Alloy predicates

If our predicate has no constraints in it, then it is always true:

pred alwaysTrue(n : Node) {

}

pred alsoAlwaysTrue() { // preds can have no arguments

}
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Example predicates

Here are some sample predicates:

I A predicate that takes no arguments, and is true if 2 < 3:

pred myPred() {

2 < 3

}

I A predicate that takes one argument, a, and is true if a < 3:

pred myPred(a : Int) {

a < 3

}
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Predicates operating on sets

The arguments to predicates can be sets, not just “individuals”:

sig Card {suit: Suit}

sig Suit {}

pred ThreeOfAKind (hand: set Card) {

#hand.suit = 1 and #hand = 3

}
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run command

We “run” an Alloy model by asking the analyzer to look for a
sample “world” for us which satisfies some predicate (up to a
particular “size” of the world).

By convention, if we want to put no constraints on what we see, we
call our predicate “show”.

sig Node { next : lone Next }

pred show() {}

run show for 3
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run command

sig Node { next : lone Node }

pred show() {}

run show for 3

I the show means we want the analyzer to find a world in which
show is true. (Which is any world – show is always true.)

I for 3 means the analyzer will consider worlds in which there
are up to 3 objects for any signature we specified.
(It needs to know this “scope” so it can decide when to give up
if it can’t find an example.)
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Example of run

sig Node { next : lone Node }

pred show() {}

pred oneBeforeLast(n : Node) {

one n.next

no n.next.next

}

run oneBeforeLast for 3

This asks Alloy to find a universe in which the predicate
oneBeforeLast is true of some Node.
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Example of run

sig Node { next : lone Node }

pred allHaveSuccessors() {

all n : Node | one n.next

}

run allHaveSuccessors for 3

This asks Alloy to find a universe in which all Nodes have a ‘next’
Node – what sort of example might it come up with?
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Example of run

sig Node { next : lone Node }

pred allHaveSuccessors() {

all n : Node | one n.next

}

run allHaveSuccessors for 3
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Example of run
Oops. If we were intending to model non-cyclic linked lists, this
probably isn’t what we had in mind – you can never reach the “end”
of this list.

We need to constrain our world a bit more.

sig Node { next : lone Node }

fact noSelfSuccessors {

all n : Node | n.next != n

}

pred allHaveSuccessors() {

all n : Node | one n.next

}

run allHaveSuccessors for 3
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Example of run

sig Node { next : lone Node }

fact noSelfSuccessors {

all n : Node | n.next != n

}

pred allHaveSuccessors() {

all n : Node | one n.next

#Node > 0

}

run allHaveSuccessors for 3
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Example of run

By viewing examples which satisfy particular predicates, we can
refine our model until it matches what we want.
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check

Alternatively, we might think there’s some predicate we think should
never be violated, and ask Alloy to double-check this – can it find a
counter-example?

We’ll see examples of check commands in the workshop.
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File system example

Let’s revisit the file system example from last lecture.

sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

sig File extends FSObject { }

// There exists a root

one sig Root extends Dir { } { no parent }

I FSObjects have parents, and directories have contents, and we
have constrained the multiplicities
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File system example
We can run this to see examples of file systems which match our
specifications.

sig FSObject {

parent: lone Dir

}

sig Dir extends FSObject {

contents: set FSObject

}

sig File extends FSObject { }

// There exists a root

one sig Root extends Dir { } {

no parent

}

pred show() {}

run for 3
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File system

I We need to constrain things more, so we’ll use a fact.

// A directory is the parent of its contents

fact { all d: Dir, o: d.contents | o.parent = d }

I This says: “for any thing (let’s call it d for the moment) of type Dir,
and for any thing (let’s call it o for the moment) which is in the set
d.contents:
o’s parent is d.
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Address book example

I Consider the following specification for an address book:

sig Name, Addr {}

sig Book {

addr: Name −> lone Addr

}

Let’s limit the scope to just one Book, like this:

pred show() {}

run show for 3 but 1 Book

We’ll create at most 3 objects, except for Book, which we’ll
only create 1 of.
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Running predicates

I Alloy will find us a basic instance with a link from a single
name to an address;
let’s try and find instance with more than one name.

pred show (b : Book) {

#b.addr > 1

}

I This says we want more than one address in our Book
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Consistency

I Can we have one name linking to more than one address?

pred show (b: Book) {

#b.addr > 1

some n: Name | #n.(b.addr) > 1

}

I The second line asserts that there exist some (one or more)
names, such that (in normal notation) the size of b.addr(n) is
greater than 1.

I Alloy tells us that nothing satisfies this predicate
(unsurprisingly, because of how we defined our signatures).
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Consistency

I It’s useful to periodically check to make sure that we haven’t
over-constrained our model . . .
(i.e., made it impossible for consistent instances to ever exist)

I . . . and also to check that we have enough constraints.
(i.e., the sorts of instances generated match up with our
intentions.)
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Consistency

I Let’s check that we can have the result of “function
application” result in a set larger than one –
i.e., there is more than one address mapped to.

pred show (b: Book) {

#b.addr > 1

#Name.(b.addr) > 1

}

run show for 3 but 1 Book

I (This says to take the function b.addr for our book, and apply
it to the set Name.)
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Operations

I We can also write predicates that represent operations on
things;
typically, they’ll refer to the “before” and “after” states of
those things.

pred add (b, b': Book, n: Name, a: Addr) {

b'.addr = b.addr + n −> a

}
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Operations

pred add (b, b': Book, n: Name, a: Addr) {

b'.addr = b.addr + n −> a

}

I Alloy allows apostrophes (“'”) in names, so “b'” is just
another parameter name.

I Alloy doesn’t make any connection between a variable called
(say) “x” and one called “x'” (pronounced “x prime”).

I But in modelling, the intended meaning when we write a
variable like “x'” is usually “x, but at the next step in time”, or
“x, but after the completion of this operation”.

I Our predicate add is a constraint, and says that b'.addr is the
union of b'.addr and the tuple (n,a).
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Operations

I If we want to see if we can find instances that satisfy this predicate,
we’ll want to enlarge the scope:

pred showAdd (b, b': Book, n: Name, a: Addr) {

add[b, b', n, a]

#Name.(b'.addr) > 1

}

run showAdd for 3 but 2 Book

I Using the Alloy visualizer, we can see what the “before” and “after”
books look like.

I In the predicate above, the “add” predicate is invoked.
This is a bit more like traditional function application: we supply
arguments to the predicate between square brackets.
I (Earlier versions of Alloy used parentheses.)

45 / 49



Operations

I We can write similar code for other operations, like “delete”,
and check that our expected constraints hold.

46 / 49



Advantages of using Alloy to check models

I Alloy allows us to build models incrementally.
I We can start with a small, simple model, and add features.
I Furthermore, it’s much easier to see what our model is when

it’s not commingled with code.
I Once an application becomes large, we can imagine that when

written in Java (say), there is a great deal of implementation
code that obscures the abstract model.
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Comparison with other methods – “model checking”

I We refer to this as “checking our model”
(but note that if people refer to “model checking”, on its own,
that refers to a different sort of formal method)

I “Model checking” on its own normally refers to using various
sorts of temporal logic to explore the evolution of finite state
machines, and see whether particular constraints hold.
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Comparison with other methods – proofs and verification

I Note that Alloy only generates model instances up to a certain
size;
I it doesn’t prove that a model is consistent.

I However, often, if there is an inconsistency, it will show up in
quite small models.

I In the workshop, we’ll see additional examples of Alloy models.
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