
Reviews Static analysis

CITS5501 Software Testing and Quality
Assurance

Software reviews

Unit coordinator: Arran Stewart

1 / 33

Reviews Static analysis

Outline

I Reviews
I Other static techniques
I Static analysis
I Code metrics

2 / 33

Reviews Static analysis

Reviews

3 / 33

Reviews Static analysis

Software reviews

I We use review as a catch-all term for manually conducted
assessments that can be applied to any static software artifact
– from requirements or specification documents, to source code,
to use case descriptions, to test plans.

I If the review is not manual, but automated, we usually instead
call that static analysis.

I Both these techniques are usually distinguished from testing
I Testing involves actually running software, in order to observe

its properties
I It’s therefore a form of dynamic analysis.

4 / 33

Reviews Static analysis

Types of reviews

Reviews vary in the amount of preparation, formality, and rigour
applied to them.

I Code review on its own usually means a review by one other
person – varying in the level of formality, and in whether a
specified checklist/criteria are used

I Code walkthroughs are done synchronously by the developer
and at least one reviewer;
I Usually informal
I The developer leads the review team through their code and the

reviewers try to identify faults
I Code inspections are fairly formal – they are a detailed,

step-by-step group review of a work product, with each step
checked against predetermined criteria. They require
preparation and follow-up.

5 / 33

Reviews Static analysis

Types of reviews, cont’d

I Audits are usually performed by an independent party, not the
development team
I This could be a QA or testing department, or could be an

outside agency.
I Although it can result in defects being identified, the main focus

of an audit is on whether the system conforms to some
standard.

6 / 33

Reviews Static analysis

Why do reviews?

I Because they’re very effective, and much cheaper than finding
defects via testing.

7 / 33

Reviews Static analysis

Comparative cost of reviews

I From one study:1 correcting defects found by testing was 14.5
times the cost to find the problem in an inspection
I This grew to 68 times the inspection cost if the defect was

reported by a customer.
I From a study based on work at IBM: correcting defects found

in a released product was 45 times the cost if the defect was
fixed at design time.

1The figures cited here are from Jorgensen (2013), citing earlier work by Karl
Weigers.

8 / 33

Reviews Static analysis

Effectiveness of reviews

The following table shows the percentage of defects found by
several different detection techniques.2

Technique Modal Rate
Informal code reviews 25.00%
Regression test 25.00%
Unit test 30.00%
New function (component) test 30.00%
Informal design reviews 35.00%
Integration test 35.00%
Low-volume beta test (<10 sites) 35.00%
Personal desk-checking of code 40.00%
System test 40.00%
Formal design inspections 55.00%
Formal code inspections 60.00%
Modeling or prototyping 65.00%
High-volume beta test (>1,000 sites) 75.00%

2From McConnell (2004), ch 20, table 20-2, citing earlier work by Capers
Jones and Shull et al.

9 / 33

Reviews Static analysis

Effectiveness of reviews

I Informal reviews, unit and regression tests have a fairly low rate
of detection (≤ 35%)

I High-volume beta testing has a high rate of detection (around
75%) – but unfortunately, it occurs at the very end of the
software development lifecycle, when defects are most costly to
remove.

I Formal inspections of design or code have a detection rate of
55–60%.

10 / 33

Reviews Static analysis

Effectiveness of reviews

I Although many of these techniques have only a low rate of
detection in isolation, McConnell (2004) points to research
suggesting that using a wide variety of techniques in
combination can result in detection rates of 95%.

I Many organizations today rely on only testing and informal
code reviews – many defects are therefore being missed at early
stages of development, and only corrected at late stages or
after release (when the cost of doing so is much higher)

11 / 33

Reviews Static analysis

Benefits of reviews

Besides the fact that they can help detect defects, reviews have
other benefits:

I Communication and knowledge transfer: reviews ensure that
knowledge about code and design are shared amongst multiple
members of a team

I Training: having code reviewed can be a useful part of training
for new personnel

I Skill improvement: reviewees can benefit from others’
suggestions; reviewers can benefit from techniques or
approaches they may not have seen before.

12 / 33

Reviews Static analysis

Comparison of different review techniques

In ascending level of formality/preparation required:

I Code review
I Code walkthrough
I Code inspection

13 / 33

Reviews Static analysis

Code reviews

I Popular in many organizations
I Fairly cheap to do – just get another developer to look at code

before it is merged into version control
I But if done without rigour, is also the least effective form of

review
I Reviewers may have a checklist of things to look for.

14 / 33

Reviews Static analysis

Checklists

I A set of questions to stimulate critical appraisal of all aspects
of the system

I Questions are usually general in nature and thus applicable to
many types of system
I But an organization may also have checklists/best practices that

should be applied to a particular language or type of system

15 / 33

Reviews Static analysis

Code inspection

I Sometimes called a “Fagan inspection”; the term “code
inspection” was introduced by Michael E Fagan.

I More formal version of a code walk-through

I Procedure:
1. Overview
2. Preparation
3. Inspection
4. Rework
5. Follow up

I Meetings are chaired by a team moderator rather than the
programmer

16 / 33

Reviews Static analysis

Review best practices

I Don’t waste reviewers’ time doing things that could have been
done by the developer or automated software

I The original developer should already have attempted to ensure
their code meets organizational standards, has been formatted
for readability – reviewers shouldn’t be doing the developers’ job
for them

I It’s a waste of time for reveiwers to detect bugs or code
formatting issues that could’ve been picked up automatically –
code beautifiers/formatters and linters/static analyses should
already have been run over the code

17 / 33

Reviews Static analysis

Review best practices, cont’d

I Capture issues that can’t be corrected immediately
I Reviewers may pick up issues or make suggestions that can’t be

fixed/implemented for the current release – but they should be
captured for future use.

I (An easy way to do this is to add them to the organization’s
issue-tracking system.)

I Document the results of reviews
I All comments made, defects identified, etc should be

documented – for instance via email or in an issue tracking
system.

18 / 33

Reviews Static analysis

Example – getNumOfDays
In labs, you will do code reviews of your own, for instance of a
getNumOfDays() method (to calculate number of days in a given month of
a given year).

if (year<1) {

throw new YearOutOfBounds(year);

}

if (month==1 || month==3 || month==5 || month=7 || month==10

|| month==12) {

numDays = 32;

} else if (month==4 || month==6 || month==9 || month==11) {

numDays = 30;

} else if (month==2) {

if (isLeapYear(year)) { numDays = 29;

}

else { numDays = 28;

}

} else {

throw new MonthOutOfBounds(month);

}

return numDays; 19 / 33

Reviews Static analysis

Other static QA techniques

I Static analysis of code
I Analysis of code metrics

20 / 33

Reviews Static analysis

Static analysis

21 / 33

Reviews Static analysis

Static analysis

I Static analysis means the automated analysis of static
software artifacts, in order to detect defects or identify other
properties of the system.
I e.g. “This program P never dereferences a null pointer”

I It runs the gamut from very very simple techniques
(e.g. grepping code for functions that are known to be unsafe
or prone to misuse), to very complex.

22 / 33

Reviews Static analysis

Targets of static analysis

Many static analysis programs operate on the source code for a
program, but some instead analyse compiled binaries.

For example, the Ghidra framework can be used to analyse binary
executables.

23 / 33

https://github.com/NationalSecurityAgency/ghidra

Reviews Static analysis

Dynamic analysis

We contrast static analysis, which operates on static artifacts, with
dynamic analysis, which runs actual (usually instrumented) code.

I Identifying branch coverage of tests is a dynamic analysis
technique

I Other dynamic techniques include code sanitizers, which detect
memory, concurrency and other issues at runtime.

I Advantages:
I often more precise than static analysis

I Disadvantages:
I need to ensure code where defects are located is actually run;

whereas static analysis can have “perfect coverage” (since the
whole of the source code is available)

I may require code to be instrumented, and therefore recompiled
I normally slower than static analysis, since code has to actually

be run.
24 / 33

https://github.com/google/sanitizers

Reviews Static analysis

Static analysis limitations

We said that static analysis tools analyse source code to determine
whether the program has some property P

I e.g. “Never results in a ClassCastException”

It is impossible to write a tool which detects any non-trivial property
of a program perfectly (no false positives, no false negatives) – this
is Rice’s Theorem.

Therefore, all tools in practice are imperfect in some way.

They approximate the behaviour of the program: they provide either
false positives or false negatives.

25 / 33

https://en.wikipedia.org/wiki/Rice%27s_theorem

Reviews Static analysis

Terminology

False positive Reporting a program has some property when it does
not

False negative Reporting a program does not have some property
when it does

26 / 33

Reviews Static analysis

Static analysis limitations

If our focus is on identifying problematic properties, we will consider

I false positives to be cases where a problem is detected (but
actually cannot occur)

I false negatives to be cases where a problem will occur, but is
not detected.

Normally, we’d prefer to err on the side of having false positives.

27 / 33

Reviews Static analysis

Types of static analysis program

I Compilers
I Amongst other things, aim to detect violations of type safety

rules
I Style checkers/linters

I Check conformance with style rules
I Bug finders

I Look for known bugs, and/or code practices that are known to
be unsafe

I Verifiers
I Prove the absence of runtime errors of various sorts

28 / 33

Reviews Static analysis

Style checkers

Style checking covers good practice for a language

Usually covers

I coding standards (layout, bracketing)
I naming conventions (e.g. snake_case, camelCase,

SCREAMING_SNAKE_CASE)
I checking for dubious code constructs (e.g. in Python, use of

eval())
I it therefore has some overlap with bug finders

Example tools:

I clang-format, clang-tidy (C and C++)
I pylint, black (Python)
I checkstyle
I ShellCheck (Bash)

29 / 33

Reviews Static analysis

Bug finders

Focus is on detecting code constructs known to be problematic.

Java examples:

I FindBugs
I PMD

PMD has many capabilities, and can be augmented with custom
rules.

30 / 33

Reviews Static analysis

Bug finders

Coverity

I Looks for bugs in C, C++, Java and C# code
I Used by many companies, including NASA JPL
I Free, cloud-based version available for open-source projects

31 / 33

http://www.coverity.com/

Reviews Static analysis

Code Metrics

I Measures of properties of code
I Usually fairly “low level” properties, when compared with static

analysis
I But the boundary is blurry

I Examples:
I graph theoretic complexity (of the program’s control graph)
I module accessibility (how many ways a module may be

accessed)
I number of entry and exit points per module
I for some other object oriented metrics see

http://yunus.hun.edu.tr/~sencer/oom.html
I Some of these metrics may correlate with the quality of the

code, or how likely it is to contain errors

32 / 33

http://yunus.hun.edu.tr/~sencer/oom.html

Reviews Static analysis

References

I Jorgensen, Paul C. Software Testing: A Craftsman’s Approach.
4th edition. Boca Raton, Florida: Auerbach Publications, 2013.

I McConnell, Steve. Code Complete. 2nd edition. Redmond,
Washington: Microsoft Press, 2004.

33 / 33

	Reviews
	Static analysis

