
System testing

CITS5501 Software Testing and Quality
Assurance

System, integration and regression testing

Unit coordinator: Arran Stewart

1 / 45



System testing

Overview

I Types of tests
I Testing strategy
I Integration testing
I Other types of testing:

I Regression testing
I “Smoke” testing
I End-to-end
I Alpha/beta

I System testing

2 / 45



System testing

Types of tests

Recall the “test pyramid” from lecture 3:

3 / 45



System testing

Types of tests
I We’ve looked in detail at unit tests, which test some “unit” of

software
I They are intended to check the behaviour of that unit – to

exercise it and look for deviations from its specification
I We normally mock other external classes used in the test

I Integration testing focuses on the flow of data and information
between two components, and their interface
I It asks, “Do they work properly together?”

I It is probably impossible to draw a hard dividing line between
units tests and integration tests – some tests might be hard to
classify

I But many tests will either have as their focus a small unit of
code in isolation (unit tests) or the interaction between two or
more components (integration tests)

4 / 45



System testing

Types of tests

I System tests aim to test the entire system against its
requirements and specifications.

I Recall that many non-functional requirements (security,
scalability, maintainability, performance) are emergent
properties: they aren’t a property of any single component in
isolation, but rather emerge from the way multiple components
interact as a whole

I This means that towards the bottom of the test pyramid, we’ll
often be more focussed on testing functional
requirements/specifications

I But as we move towards the top of the pyramid, it becomes
possible to test for non-functional requirements.

5 / 45



System testing

Testing strategy

I Typically, we begin by ‘testing-in-the-small’ and move toward
‘testing-in-the-large’
I Start with units (functions/classes)
I Then start integrating them

6 / 45



System testing

Testing strategy

I While doing unit testing, we will typically make use of
“mocks”/doubles in place of other units or modules

I In integration testing, we can test how two (or more) units or
modules work together
I The units or modules under test will not be mocked, obviously,

since what we want to know is whether they work properly
together

I But they might rely on additional components (e.g. databases)
which are mocked.

I The closer we get to the top of the test pyramid, the fewer
mocks we use, in favour of using components which are as
close to the production environment as we can get.

7 / 45



System testing

Integration vs unit testing

I Do we need both?

Yes . . .

I Unit testing is a necessary basis for integration testing
I gives maximum control over individual units

I Integration testing
I may discover module faults not found in unit testing –

but that’s a sign of insufficient unit testing
I Ideally, should discover faults in the interfaces / flow of control

between otherwise correct modules
I Can be used to test third-party components which we can’t unit

test

8 / 45



System testing

Integration vs unit testing

I Do we need both?

Yes . . .

I Unit testing is a necessary basis for integration testing
I gives maximum control over individual units

I Integration testing
I may discover module faults not found in unit testing –

but that’s a sign of insufficient unit testing
I Ideally, should discover faults in the interfaces / flow of control

between otherwise correct modules
I Can be used to test third-party components which we can’t unit

test

8 / 45



System testing

Why do integration testing?

I Unit tests only test the unit in isolation
I Many failures arise from faults in the interaction between

components
I Letting faults persist until system testing or deployment can be

very expensive

9 / 45



System testing

Integration testing

I The entire system is viewed as a collection of subsystems (sets
of classes) determined during the system and object design.

I The order in which the subsystems are selected for testing and
integration determines the testing strategy

10 / 45



System testing

Examples of integration faults

I One component calls another incorrectly
I e.g. perhaps calls must happen in a particular order

I Components have inconsistent interpretation of parameters or
values
I e.g. a parameter represents units of force – but is it in Newtons

(SI system) or pounds (US)? (Cause of a Martian Lander fault)
I Conflicts arising due to side effects

I e.g. two components try to make use of same temporary file

11 / 45



System testing

Examples of integration faults, cont’d

I Emergent failures (non-functional properties)
I We said that many qualities of a system (e.g. performance,

security) can’t be localised to a single component, but arise
from the interaction of components.

I It follows that failures relating to those qualities (poor
performance, poor security) sometimes can only be detected
from the interaction of components

12 / 45



System testing

Integration testing strategies

Main options:

I Big bang integration (nonincremental)
I Bottom up integration
I Top down integration
I Sandwich testing
I Variations of the above

13 / 45



System testing

Drivers and stubs

Terminology sometimes used in integration testing:

I Driver: A program that makes calls into the module being
tested and reports the results
I The driver simulates some module that (in the final system) will

call the module under test
I Stub: A module that has the same interface as the module

under test, but is simpler
I The stub simulates a module which is called by the module

under test

14 / 45



System testing

“Big Bang” Integration Testing

The approach:

I Do no integration testing until all modules have been
completed;
then try and test everything at once.

Problems:

I Expensive, if faults could’ve been detected earlier
I Poor ability to observe faults and diagnose/localize them

15 / 45



System testing

Top-down integration

I Test the top layer or controlling subsystem first
I It’s the “top” module in the sense that it uses or calls into other

modules
I Use stubs to simulate components we haven’t

implemented/integrated yet
I Then start implementing the subsystems called by that top

system, and test them in the same way . . .
I And continue “down” until everything is done.

16 / 45



System testing

Top-down integration

Top

stub A stub B stub C

Begin with the top level,
test it by letting it call
stubs.
(From material earlier on
test doubles: our stubs can
be spies, that allow us
check how they’re being
called and whether it’s
being done correctly.)

17 / 45



System testing

Top-down integration

Top

A stub B stub C

stub X stub Y

As we implement and
incorporate more modules,
test them using stubs.

18 / 45



System testing

Pros and cons of top-down integration testing
Pro:

I Test cases can be defined in terms of the functionality of the system
(functional requirements)

Cons:

I Writing stubs can be difficult: stubs should allow for a wide range of
conditions to be tested.

I Possibly a very large number of stubs may be required, especially if
the lowest level of the system contains many methods.

I One solution to avoid too many stubs: Modified top-down testing
strategy
I Test each layer of the system decomposition individually before

merging the layers
I Disadvantage of modified top-down testing: Both stubs and

drivers are needed
19 / 45



System testing

Bottom-up integration

I Start by implementing and testing the modules/subsystems in
the “lowest” layer, individually

I Use test drivers to simulate calling into them
I Then start replacing drivers with actual implementations, and

work “upwards”

20 / 45



System testing

Bottom-up integration

Driver

X

Start by implementing modules at
the bottom of the “uses”
hierarchy.

They will be tested by drivers,
which simulate making calls into
the module under test.

21 / 45



System testing

Bottom-up integration

Driver

X

Driver

Y

As we implement more modules,
we need to write drivers for them,
too.

22 / 45



System testing

Bottom-up integration

Driver

A

X Y

But once we’ve finished a
“mid-layer” module, it replaces
the driver modules which
previously simulated it.

23 / 45



System testing

Pros and cons of bottom up integration testing

I Pro: Systems tested as they are ready
I Con: Typically tests one important subsystem (UI) last

24 / 45



System testing

“Sandwich” integration

I Combine top-down with bottom-up – work from both “ends”
inwards

25 / 45



System testing

“Sandwich” integration

(Partial) Top

Stub C

Y

We may end up not
needing as many stubs or
drivers as in previous
approaches.

26 / 45



System testing

Steps in integration testing

1. Based on the integration strategy, select a component to be
tested. Unit test all the classes in the component.

2. Put selected component together; do any preliminary fix-up
necessary to make the integration test operational (drivers,
stubs)

3. Do functional testing: Define test cases that exercise all uses
cases with the selected component

4. Do structural testing: Define test cases that exercise the
selected component

5. Execute performance tests
6. Keep records of the test cases and testing activities.
7. Repeat steps 1 to 7 until the full system is tested.

The primary goal of integration testing is to identify errors in
the (current) component configuration.

27 / 45



System testing

Which integration strategy should you use?

I Factors to consider
I Amount of test harness (stubs &drivers)
I Location of critical parts in the system
I Availability of hardware
I Availability of components
I Scheduling concerns

28 / 45



System testing

Which integration strategy should you use?, cont’d

I Bottom up approach
I good for object oriented design methodologies
I Test driver interfaces must match component interfaces
I Top-level components are usually important and cannot be

neglected up to the end of testing
I Detection of design errors postponed until end of testing

29 / 45



System testing

Which integration strategy should you use?, cont’d

I Top down approach
I Test cases can be defined in terms of functions examined
I Need to maintain correctness of test stubs
I Writing stubs can be difficult

30 / 45



System testing

Regression testing

I Mentioned in previous lectures:
I Regression testing is the re-execution of some subset of tests

that have already been conducted, to ensure that changes have
not propagated unintended side effects

I Whenever software is corrected, some aspect of the software
configuration (the program, its documentation, or the data
that support it) is changed.

I Regression testing helps to ensure that changes (due to testing
or for other reasons) do not introduce unintended behavior or
additional errors.

I Regression testing may be conducted manually, by re-executing
a subset of all test cases or using automated tools.

31 / 45



System testing

Smoke Testing

A common approach for creating “daily builds” for product software
Smoke testing steps:

I Software components that have been translated into code are
integrated into a “build.”
I A build includes all data files, libraries, reusable modules, and

engineered components that are required to implement one or
more product functions.

I A series of tests is designed to expose errors that will keep the
build from properly performing its function.
I The intent should be to uncover “show stopper” errors that

have the highest likelihood of throwing the software project
behind schedule.

I The build is integrated with other builds and the entire product
(in its current form) is smoke tested daily.
I The integration approach may be top down or bottom up.

32 / 45



System testing

Other sorts of testing

I End-to-end testing
I Checks how a system or component behaves in a particular

user-focused scenario (e.g. use case, or user story), usually in a
near-production environment, and whether it behaves as
expected.

I The focus differs a little from typical “system tests”
I System tests show that the system satisfies some requirement or

specification
I End-to-end tests demonstrates that particular processes can be

done by or using the system
I e.g. Can a user successfully login, go to the product page, add a

product to the shopping cart, pay for items, and log out.

33 / 45



System testing

Other sorts of testing, cont’d

I Validation testing
I Ensures that the product actually meets the client’s needs
I Demonstrates that the system fulfills its intended use when

deployed in an appropriate environment
I Alpha/Beta testing

I Focus is on customer usage
I Alpha testing = done by employees of development organisation,

simulates typical use tasks
I Beta testing = done by releasing to a limited number of real

users

34 / 45



System testing

System testing

35 / 45



System testing

Testing non-functional requirements

Some sorts of non-functional, system-level test, we’ve already
mentioned:

I Load testing – How does our software perform under high loads
– the largest volumes of data we expect to receive? Does it
perform correctly?

I Stress testing – How does our software behave when we exceed
the expected maximum?
Does it degrade gracefully?

I Robustness testing – How well does our system handle
malformed inputs?
Does it avoid undesirable behaviours (e.g. segfaults, security
holes, displaying raw stack traces to end users)?

36 / 45



System testing

Testing non-functional requirements

What do tests of this sort look like?

Good tests follow exactly the same pattern we’ve seen previously –
Arrange, Act, Assert.

For a unit or integration test, we usually “Act” (invoke behaviour)
by calling a method or function.

But for tests of non-functional requirements, we could be

I invoking the whole program and measuring particular properties
(e.g. how long it takes to execute)

I starting a program (e.g. a web app), making requests against it,
and measuring the response to those requests

37 / 45



System testing

Frameworks for non-functional testing

Sometimes we might write our tests of non-functional requirements
in the same language(s) as our system, sometimes not.

Scripting languages like Bash, Python, and Perl are especially
convenient for executing programs, launching other test utilities,
and extracting performance data from the OS.

So even if our system is written in Java, it might be convenient to
write these tests using a Perl or Python test framework.

38 / 45



System testing

Testing non-functional requirements

Besides load, stress, and robustness testing, some other sorts of
system testing include:

I Recovery testing
I forces the software to fail in a variety of ways and verifies that

recovery is properly performed
I Security testing

I verify that the system meets security requirements and is
protected from improper penetration

I Performance Testing
I test the run-time performance of software within the context of

an integrated system

39 / 45



System testing

Load, stress and robustness testing

For load and stress testing, we will normally generate random
traffic/data for our system, and conduct tests which measure
performance against requirements.

For robustness testing, fuzzing (and other sorts of randomized
testing) can be very effective.

40 / 45



System testing

Security testing

Note that security problems cannot (typically) be avoided through
testing alone – good system security requires us to be mindful of
security and incorporate it at all stages of the software development
lifecycle.

41 / 45



System testing

Types of security testing

Some typical sorts of security testing:

I Vulnerability scanning: using automated software which aims
to detect known security vulnerabilities in a system.
I Vulnerabilities detected can include misconfigured software,

versions of particular packages known to be insecure, and more
I The term “vulnerability scanner” normally means a program

which is run against a live (running) system.
I Some popular vulnerability scanners include Nessus and

Nexpose (both commercial), or Nmap and Metasploit (partially
or wholly open source)

42 / 45

https://www.tenable.com/products/nessus
https://www.rapid7.com/products/nexpose/
https://nmap.org
https://www.metasploit.com


System testing

Types of security testing, cont’d

I Penetration testing
I This simulates an attack by a malicious party. It usually

involves evaluating a system (including vulnerability scanning)
and exploiting found vulnerabilities to gain access to the system
and breach data confidentiality, data integrity, or the availability
of services.

I Fuzzing
I Fuzzing, which we’ve looked at previously, can often identify

security vulnerabilities. The most common cause of program
crashes is improper access to memory locations, and these can
often be exploited so as to compromise security.

43 / 45



System testing

Secure software development techniques

Security tests should be part of a broader approach to security
which might include:

I Threat modelling: a structured way of identifying threats and
mitigations that could affect a system, and then organizing and
communicating that information. (The OWASP page on threat
modelling has more information on this.)

I Security reviews: review of code (or other artifacts, e.g. design
documents or specifications) by a human reviewer, looking for
insecure or problematic code.

I Static code analysis: using programs which analyse code
statically (i.e., without running it), and aim to detect code that
is likely to cause security problems or is known to be
problematic in other ways.

44 / 45

https://owasp.org/www-community/Threat_Modeling
https://owasp.org/www-community/Threat_Modeling


System testing

Secure software development techniques, cont’d

I Compliance or conformance testing: assessing whether a
system conforms to particular standards.

I Security audits: a type of security review; a security audit is a
structured process for reviewing a system according to some
defined standard.

45 / 45


	System testing

