
CITS5501 Software Testing and Quality
Assurance

Logic-Based Testing

Unit coordinator: Arran Stewart

1 / 43

Logic-based testing

I One simplification we made when looking at source flow
control was that a decision point was just treated as a “black
box” – it might contain a complex boolean condition, but all
we cared about was the fact that graph edges went in, and
graph edges came out.

I Modeling the internal structure of the boolean conditions leads
us to logic testing – modeling the logical structure of
conditions, and checking how well we have exercised different
parts of them.

2 / 43

Logic expressions

I Logic expressions show up in many situations in software
systems.
I Decisions in programs
I State charts (a system can move to a different state when

particular conditions are satisfied)
I Use cases (a user can take different actions)
I . . . pretty much all the things we could model as a graph, in

fact, where there’s a choice of path based on logical conditions
I Requirements, both formal and informal (e.g. something must

satisfy requirement A AND either or both of requirements B
and C)

I SQL queries

3 / 43

Uses of logic expressions

I As with graph models, we can use logical expressions to identify new
tests, assess the coverage of existing tests, and sometimes spot
problems in our system
(e.g. we might have written redundant clauses in a logic expression,
that can never in fact be executed – the logic equivalent of “dead
code”)

I Plus, it’s useful to look at logic-based testing, because sometimes it’s
mandated by legislation.

I e.g. A certain level of logic expression coverage is required by the US
Federal Aviation Administration for safety critical software.

I (I don’t know offhand what requirements are imposed by CASA, the
Civil Aviation Safety Authority in Australia. But very few people
design planes without considering what requirements are imposed by,
for instance, the USA and the EU.)

4 / 43

Structure of logic expressions
I Here’s a sample logic expression:

(i < j) ∧ isAlpha(c) ∨ b ∨ (m ≥ n ∗ o)

I Things it contains:
I boolean variables (“b”)

(technically, it might also include boolean literals, true and
false, but there’s no point in doing so)

I function calls that evaluate to booleans (“isAlpha(c)”)
I predicates (“tests”) that operate on values, and evaluate to

booleans (“i < j”, “m ≥ n ∗ o”)

I We can think of all those as inputs to the expression.
I They are joined by various connectives . . .

(“and”, “or”, “not”, etc., plus parentheses)
I . . . and ultimately, produce a single boolean output – so logic

expressions are a function from the inputs, to a boolean.

5 / 43

Structure of logic expressions
I Here’s a sample logic expression:

(i < j) ∧ isAlpha(c) ∨ b ∨ (m ≥ n ∗ o)

I Things it contains:
I boolean variables (“b”)

(technically, it might also include boolean literals, true and
false, but there’s no point in doing so)

I function calls that evaluate to booleans (“isAlpha(c)”)
I predicates (“tests”) that operate on values, and evaluate to

booleans (“i < j”, “m ≥ n ∗ o”)

I We can think of all those as inputs to the expression.
I They are joined by various connectives . . .

(“and”, “or”, “not”, etc., plus parentheses)
I . . . and ultimately, produce a single boolean output – so logic

expressions are a function from the inputs, to a boolean.

5 / 43

Structure of logic expressions
I Here’s a sample logic expression:

(i < j) ∧ isAlpha(c) ∨ b ∨ (m ≥ n ∗ o)

I Things it contains:
I boolean variables (“b”)

(technically, it might also include boolean literals, true and
false, but there’s no point in doing so)

I function calls that evaluate to booleans (“isAlpha(c)”)
I predicates (“tests”) that operate on values, and evaluate to

booleans (“i < j”, “m ≥ n ∗ o”)

I We can think of all those as inputs to the expression.
I They are joined by various connectives . . .

(“and”, “or”, “not”, etc., plus parentheses)
I . . . and ultimately, produce a single boolean output – so logic

expressions are a function from the inputs, to a boolean.
5 / 43

Structure of logic expressions

I If we have some number n of inputs, each of which can be true
or false, then there will be 2n possible inputs in total

I e.g. For the expression a ∧ (b ∨ d), a, b and d can all be true or
false, giving eight possibilities. . .

a b c

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

6 / 43

Structure of logic expressions

a b c

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

I We would like to choose some subset of the total number of
truth assignments, since 2n quickly gets large.

I 26 (a modest number of inputs) is 64, and even if we only have,
say, a few hundred logic expressions in our program, that’s still
potentially 19200 tests (assuming 300 expressions).

I It would be nice if we could do with fewer.
7 / 43

Definitions

(i < j) ∧ isAlpha(c) ∨ b ∨ (m ≥ n ∗ o)

I A predicate is an expression that evaluates to a boolean value.
(So the expression as a whole is a predicate, as are some of its
parts – e.g. i < j)

I Predicates can contain
I boolean variables (e.g. b)
I non-boolean variables, operated on by relational operators

(e.g. “>”, “<”, “==”, “>=”, “!=” all can operate on
non-boolean variables)

I function or method calls that return a boolean

8 / 43

Connectives

I Predicates can be joined by connectives – logical operators.

I Common programming connectives:

¬, ! – logical not
∧, and, && – logical “and”
∨, or, || – logical “or”

I Less-common connectives:

→ – logical implication
⊕ – XOR (exclusive or)
≡ – logical equivalence

9 / 43

Clauses

(i < j) ∧ isAlpha(c) ∨ b ∨ (m ≥ n ∗ o)

I A clause is a predicate with no logical connectives
(i.e., it’s at the “bottom level”).

I b is a clause, as is i < j ; they contain no logical connectives

10 / 43

Clauses

So, how many clauses here?

(i < j) ∧ isAlpha(c) ∨ b ∨ (m ≥ n ∗ o)

11 / 43

Clauses

I In practice, most predicates have few clauses
I (It would be nice to quantify that claim. . .

Doing so is the task of empirical software engineering, which
amongst other things studies corpuses of code to see how
programmers write code in practice.)

12 / 43

Use of predicates in logic-based testing

I We use predicates in testing as follows:
I Developing a model of the software as one or more predicates
I Requiring tests to satisfy some combination of clauses

13 / 43

Some abbreviations

We’ll use:

I P is the set of predicates
I p is a single predicate in P (that is, p ∈ P)
I C is the set of clauses in P
I Cp is the set of clauses in predicate p
I c is a single clause in C

14 / 43

Predicate and Clause Coverage

I The first (and simplest) two criteria we consider require that
each predicate and each clause be evaluated to both true and
false

Predicate Coverage (PC): For each p in P, our test requirements
include that:
(1) p evaluates to true, and (2) p evaluates to false.

I When predicates come from conditions on edges, this is
equivalent to edge coverage

I Note that PC does not evaluate all the clauses . . . so,

Clause Coverage (CC): For each c in C , our test requirements
include that:
(1) c evaluates to true, and (2) c evaluates to false.

15 / 43

Predicate coverage example

Consider the predicate

(a < b) ∨ d ∧ (m >= n ∗ o)

Assume a, b, m, n, o are integers, and d is a boolean.
What are some input values for getting predicate coverage of this
predicate?

What about clause coverage?

16 / 43

Predicate coverage example

Consider the predicate

(a < b) ∨ d ∧ (m >= n ∗ o)

Assume a, b, m, n, o are integers, and d is a boolean.
What are some input values for getting predicate coverage of this
predicate?

What about clause coverage?

16 / 43

Clause coverage example

(a < b) ∨ d ∧ (m >= n ∗ o)

1. a = 5, b = 10, d = true, m = n = o = 1
2. a = 10, b = 5, d = false, m = 1, n = 2, o = 2

17 / 43

Clause coverage example

(a < b) ∨ d ∧ (m >= n ∗ o)

1. a = 5, b = 10, d = true, m = n = o = 1
2. a = 10, b = 5, d = false, m = 1, n = 2, o = 2

17 / 43

Problems with PC and CC

I PC does not fully exercise all the clauses, especially in the
presence of short circuit evaluation

I CC does not always ensure PC
I That is, we can satisfy CC without causing the predicate to be

both true and false
I A simple solution (well, simple to state, anyway) is to test all

combinations . . .

18 / 43

Problems with PC and CC

I PC does not fully exercise all the clauses, especially in the
presence of short circuit evaluation

I CC does not always ensure PC
I That is, we can satisfy CC without causing the predicate to be

both true and false
I A simple solution (well, simple to state, anyway) is to test all

combinations . . .

18 / 43

Combinatorial Coverage (CoC)

I CoC requires every possible combination
I Sometimes called Multiple Condition Coverage

Combinatorial Coverage (CoC): For each p in P, our test requirements
include requirements for the clauses in Cp to evaluate to each possible
combination of truth values.

a < b d m ≥ n ∗ 0 ((a < b) ∨ d) ∧ (m ≥ n ∗ o)

1 T T T T
2 T T F F
3 T F T T
4 T F F F
5 F T T T
6 F T F F
7 F F T F
8 F F F F

19 / 43

Combinatorial Coverage (CoC)

I CoC requires every possible combination
I Sometimes called Multiple Condition Coverage

Combinatorial Coverage (CoC): For each p in P, our test requirements
include requirements for the clauses in Cp to evaluate to each possible
combination of truth values.

a < b d m ≥ n ∗ 0 ((a < b) ∨ d) ∧ (m ≥ n ∗ o)

1 T T T T
2 T T F F
3 T F T T
4 T F F F
5 F T T T
6 F T F F
7 F F T F
8 F F F F

19 / 43

Combinatorial Coverage

I This idea is “simple”, neat, clean, and comprehensive . . .
I But quite expensive!
I 2N tests, where N is the number of clauses
→ Impractical for predicates with more than 3 or 4 clauses

The literature has lots of suggestions – some confusing

I The general idea is simple:
Test each clause independently from the other clauses

I Getting the details right is hard
I What exactly does “independently” mean?
I The text presents this idea as “making clauses active” . . .

20 / 43

Combinatorial Coverage

I This idea is “simple”, neat, clean, and comprehensive . . .
I But quite expensive!
I 2N tests, where N is the number of clauses
→ Impractical for predicates with more than 3 or 4 clauses

The literature has lots of suggestions – some confusing

I The general idea is simple:
Test each clause independently from the other clauses

I Getting the details right is hard
I What exactly does “independently” mean?
I The text presents this idea as “making clauses active” . . .

20 / 43

Active clauses
I Clause coverage has a weakness: The values do not always

make a difference

I Consider the first test for clause coverage, which caused each
clause to be true:

(a < b) ∨ d ∧ (m >= n ∗ o)

test 1 values:

(5 < 10) ∨ true ∧ (1 >= 1 ∗ 1)

I Since 5 < 10 is true, only the first clause counts – doesn’t
matter what the rest were.

I To really test the results of a clause, the clause should be the
determining factor in the value of the predicate

21 / 43

Determining predicates

Informal explanation of when a clause “determines” the value of
some predicate:

I Suppose we have some predicate p, with a bunch of clauses in
it.

I Let’s suppose we’re looking at one particular clause, call it c.
I Whether c “determines” the value of p depends on the values

of all the other clauses in p.
I If the values of all the other clauses are such that, whenever we

flip c, the value of the whole predicate changes, then we say
that c determines the value of p.

22 / 43

Determining predicates

The textbook definition of “determination” is as follows:
Determination
Given a major clause ci in predicate p, we say that ci determines
p if the minor clauses cj ∈ p, where j 6= i , have values so that
changing the truth value of ci changes the value of p

I By “major clause”, Ammann and Offutt just mean “the clause
we’re currently considering”, and by “minor clause”, they just
mean “all the other clauses”.

23 / 43

Determination examples – “OR”

Determination definition
I Given a major clause ci in predicate p, we say that ci

determines p if the minor clauses cj ∈ p, j 6= i have values so
that changing the truth value of ci changes the truth value of
p.

I So suppose p is A ∨ B.
I A determines p when B is false.

(i.e. The value of p depends on A.)
I But when B is true, A does not determine p.

24 / 43

Determination examples – “AND”

I Suppose p is A ∧ B.
I When will A determine p?
I Let’s consider possible values for B.

I When B is false, then A∧B will be false, regardless of the value
of A. So A doesn’t determin p in this case.

I But when B is true, then A ∧ B will be true when A is true, and
false when A is false.

I Which is exactly the definition of “determination”.
I So: A determines p when B is true.

That is – the value of p depends on A.

25 / 43

Active clause coverage

I So, we have seen several sorts of logic coverage criterion, and
some problems with them.
I clause and predicate coverage – these are usually too

coarse-grained
I combinatorial coverage/multiple condition coverage – this may

be too expensive
I Now that we have defined what it means to determine the

value of a predicate, we can define a more useful coverage
criterion: Active Clause Coverage (ACC).

I Informally: for each clause c in each predicate p, we find values
for all the other clauses in p such that c determines p.

26 / 43

Active clause coverage definition

Active Clause Coverage (ACC)
I For each p ∈ P and each major clause ci ∈ Cp, choose minor

clauses cj , j 6= i so that ci determines p.
I For each ci , we require that ci evaluates to true and ci

evaluates to false.

I In other words: for all the predicates we are considering (P),
we want to make each clause in each predicate p active

I We choose values for the other clauses so that the clause under
consideration (ci) will determine the value of the predicate as a
whole

I And then we select test inputs that will make that clause true
and false, in turn.

27 / 43

A problem with active clause coverage

Active Clause Coverage (ACC)
I For each p ∈ P and each major clause ci ∈ Cp, choose minor

clauses cj , j 6= i so that ci determines p.
I For each ci , we require that ci evaluates to true and ci

evaluates to false.

I Given this definition of ACC, there is some ambiguity about
how values for “other clauses” may be selected.

I Namely: when considering the minor clauses (cj), do they need
to have the same value when our major clause (ci) is false, as
when it is true?

28 / 43

Active clause coverage ambiguity

I Consider the following predicate p:

A↔ B

I This is equivalent to the Java code a == b, where a and b are
booleans

29 / 43

Active clause coverage ambiguity

p: A↔ B

I p contains two clauses, A and B
I Now, regardless of what B is, A determines p.
I So let’s make A the major (active) clause, and select test values:

- Test 1: A = true, B = true, and consequently p = true
- Test 2: A = false, B = false, and consequently p = true.

I Now let’s make B the major clause;
We could select exactly the same values as when A was active.

I So we end up with only two test inputs, and we never actually make
p false; so ACC does not subsume predicate coverage.

30 / 43

General active clause coverage (GACC)

p: A↔ B
- Test 1: A = true, B = true, and consequently p = true
- Test 2: A = false, B = false, and consequently p = true.

I In this case, our minor clauses have different values for when
the active clause is true, as when it is false.

I This is the most general case of ACC – we call it “General
active clause coverage” (GACC)

I As we have seen, it misses some cases that predicate coverage
would catch.

31 / 43

General active clause coverage (GACC) definition

The definition is the same as ACC, with an addition:

Active clause coverage
I For each p ∈ P and each major clause ci ∈ Cp, choose minor

clauses cj , j 6= i so that ci determines p.
I For each ci , we require that ci evaluates to true and ci

evaluates to false.

We add:

I The values chosen for the minor clauses cj do not need to be
the same when ci is true as when ci is false.

32 / 43

Restricted active clause coverage

Alternatively, if we insist the values for minor clauses cj must be the
same when ci is true as when ci is false, we end up with Restricted
Active Clause Coverage (RACC).

Restricted active clause coverage
I For each p ∈ P and each major clause ci ∈ Cp, choose minor

clauses cj , j 6= i so that ci determines p.
I For each ci , we require that ci evaluates to true and ci

evaluates to false.
I The values chosen for the minor clauses cj must be the same

when when ci is true as when ci is false

33 / 43

Relevance of active clause coverage

I The Amman and Offut text describes various other flavours of
ACC, and other sorts of logic coverage – we will consider only
GACC and RACC

I You may also see logic coverage referred to as “condition
coverage”

I One application: “modified condition/decision coverage”
(MC/DC), mandated for some avionics software.

34 / 43

Modified condition/decision coverage (MC/DC)

MC/DC
I Each entry and exit point must be invoked
I Each decision takes every possible outcome

I Equivalent to what we have called branch or edge coverage
I Each condition in a decision takes every possible outcome

I A “condition” means an atomic-level Boolean expression – what
we have called a clause

I So this is equivalent to clause coverage
I Each condition in a decision is shown to independently affect the

outcome of the decision.
I Equivalent to active clause coverage

I Since ACC is ambiguous, it follows MC/DC is too – this has
led to confusion.

35 / 43

Logic expressions

I We will typically extract logic expressions from specifications or
source

I When a predicate has only one clause, CoC, CC and ACC all
collapse to predicate coverage (PC)

I Applying logic criteria to program source is hard because of
reachability and controllability:
I Reachability: Before applying the criteria on a predicate at a

particular statement, we have to get to that statement
I Controllability: We have to find input values that indirectly

assign values to the variables in the predicates
I (Variables in the predicates that are not inputs to the program

are called internal variables)

36 / 43

Specifications

I Specifications can be formal or informal
I Formal specs are usually expressed mathematically
I Informal specs are usually expressed in natural language

I Many formal languages and informal styles are available
I Most specification languages include explicit logical expressions,

so it is easy to identify the predicates and clauses
I Implicit logical expressions in natural-language specifications

should be re-written as explicit logical expressions as part of
test design
I You will often find mistakes

I One of the most common sources is preconditions

37 / 43

Example

I “Release the monster when the sky is clear; in addition, the
moon must be full, and/or the wind calm”

I Re-write as an explicit logical expression (checking with client
this is correct):

Let:
I m be “the moon is full”
I s be “the sky is clear”
I w be “the wind is calm”

and

p be s ∧ (m ∨ w)

38 / 43

Example

p is: s ∧ (m ∨ w)

Suppose we are asked to come up with tests which will satisfy the
Restricted active clause coverage criterion.

We must make each of s, m and w active in turn. And the values
for the other two clauses must be the same when the clause under
consideration is true, as when it is false.

39 / 43

Example – clause s

p is: s ∧ (m ∨ w)

Making s active:

I s will be active when m ∨w is true; we just need to pick values
of m and s which will make this so. Let’s choose m = true,
and w = false.

I Now, the value of s determines p.

40 / 43

Example – clause m

p is: s ∧ (m ∨ w)

Making m active:

I We need s to be true, otherwise p will always be false.
I And we need w to be false, otherwise m∨w will always be true.
I So we set s = true, and w = false.
I Now, m determines the value of p.

41 / 43

Example – clause w

p is: s ∧ (m ∨ w)

Making w active:

I This will be very similar to the last case (since ∨ is what is
called “commutative” – like “+” in arithmetic, where
a + b = b + a).

I s must be true, and m must be false.

I And then, w determines the value of p.

42 / 43

Example

p is: s ∧ (m ∨ w)

So in this case, a set of tests that give us RACC are:

Test description Inputs Expected output
Make s active, and

s = true s = true, m = true, w = false Monster is released
s = false s = false, m = true, w = false Monster not released

Make m active, and
m = true s = true, m = true, w = false Monster is released
m = false s = true, m = false, w = false Monster not released

Make w active, and
w = true s = true, m = false, w = true Monster is released
w = false s = true, m = false, w = false Monster not released

43 / 43

