
CITS5501 Software Testing and Quality
Assurance

Graph-based testing

Unit coordinator: Arran Stewart

1 / 22



Overview

I Graph-based testing – we identify inputs which will exercise
particular paths through a graph representing the software in
some way.

I The graph could represent
I control flow through a program
I data flow between variables
I an activity diagram, showing the workflow when a user interacts

with the system
I a state diagram, showing states of a system and transitions

between them

2 / 22



Graph definition

A graph consists of:

I A set N of nodes
I A set E of edges, each edge being an “arrow” from one node

to another

3 / 22



Graph-based testing

We will start by considering control flow. Our approach is:

1. Use the source code (or pseudocode) to produce a control flow
graph.

2. Using the graph produce a set of tests for the given program.

4 / 22



Constructing the graph

I In a control flow graph, nodes represent points in the program
control flow can go “from” or “to”

I Loops, thrown exceptions and gotos (in languages that have
them) are locations control flow can go from – statements
representing these spots are “sources”

I Locations control flow can go to are “sinks”

5 / 22



Sequence control flow graphs

I The flow graph for a sequence of statements “s1; s2;” is

s1

s2

6 / 22



if-then control flow graphs

I given pseudocode like

if c then:

s1

s2

we get the following graph

c

s1

true

false

s2

7 / 22



if-then-else control flow graphs

I if c then:

s1

else:

s2

s3

c

s2

falsetrue

s3

s1

8 / 22



What about loops?

I Edges will obviously go “backward” in the graph (usually,
towards the “top”)

9 / 22



while-do control flow graphs

I while c do:

s1

s2

c

s2

false

true

s1

10 / 22



other structures

I Most other control flow structures can be written into one of
these forms (including “case” statements, breaking out of
loops, “for” loops, etc)

11 / 22



other structures – example

A “case” statement:

case x of:

val1: s1; break

val2: s2; break

default: s3

s4

Can be written as nested if-else

if x == v1:

s1

else:

if x == v2:

s2

else:

s3

s4

12 / 22



Using the graph

I To find a new test, examine the graph edges that haven’t been
exercised yet, and try to devise a test that exercises it

I In general, we’d actually like to find a test that exercises as few
edges as possible

I why?

I Tests that exercise a large number of edges usually represent
“common” scenarios – we’d actually like to find less common
cases (i.e. get more “value” out of the test)

I Ideally, we want tests to be small and independent, so that
when something goes wrong, we can localize the fault.

13 / 22



Using the graph

I To find a new test, examine the graph edges that haven’t been
exercised yet, and try to devise a test that exercises it

I In general, we’d actually like to find a test that exercises as few
edges as possible

I why?
I Tests that exercise a large number of edges usually represent

“common” scenarios – we’d actually like to find less common
cases (i.e. get more “value” out of the test)

I Ideally, we want tests to be small and independent, so that
when something goes wrong, we can localize the fault.

13 / 22



Example – sorting algorithm

S1 i = 2

C1 while (i <= n):

S2 j = i − 1

C2 while j >= 1 and A[j] >= A[j+1]:

S3 temp = A[j]

S4 A[j] = A[j+1]

S5 A[j+1] = temp

S6 j = j−1

S7 i = i + 1

14 / 22



Example – sorting algorithm (2)

15 / 22



Example – binary search

Inputs

I n, the length of the following array.
I A, an integer array with entries A[1], ..., A[n] such that

A[i] < A[i+1] for i between 1 and n-1

(i.e., it’s sorted in ascending order, and 1-based)
I key, an integer to search for (the “needle”)

Outputs

I index, an integer between 0 and n such that:
I if index = 0 then key does not equal any entry of the array A
I if index is between 1 and n then A[index] = key

16 / 22



Example – binary search (2)

found = false

low = 1

high = n

while ((low <= high) and not found):

medium = floor((low + high)/2)

if A[medium] == key:

index = medium

found = true

else:

if A[medium] < key then

low = medium + 1

else:

high = medium − 1

if not found:

index := 0

17 / 22



Graph-based testing criteria

Graph-based testing criteria

18 / 22



Graph-based testing criteria

Graph-based testing criteria

I Some possible criteria include:
I node coverage - our test set traverses every node

(if using program control flow: statement coverage is similar,
but coarser)

I edge coverage - we traverse every edge
I egde-pair coverage - we traverse every possible pair of edges

I We might use the informal heuristic of executing each loop 0
times, once, more than once (sometimes called “loop
coverage”)

19 / 22



Graph-based testing criteria

Prime paths

Definitions:

I Simple path: A path from node ni to nj is simple if no node
appears more than once, except possibly the first and last
nodes are the same
I No internal loops in our path
I A loop is a simple path

I Prime path: A simple path that does not appear as a proper
subpath of any other simple path

20 / 22



Graph-based testing criteria

Prime paths

Definitions:

I Simple path: A path from node ni to nj is simple if no node
appears more than once, except possibly the first and last
nodes are the same
I No internal loops in our path
I A loop is a simple path

I Prime path: A simple path that does not appear as a proper
subpath of any other simple path

20 / 22



Graph-based testing criteria

Prime path coverage

I Prime Path Coverage (PPC): Every prime path in the graph
is visited.

I It subsumes node and edge coverage

I But not edge-pair coverage – we code have nodes (m,n), where
m loops to itself, and edge pair coverage requires the path
(m,m,n) to be exercised.

I when it comes to devising tests, some tests may end up
exercising multiple prime paths. But that’s okay – as long as
all prime paths are visited, we’ve satisfied the criterion.

21 / 22



Graph-based testing criteria

Control flow graphs

In a control flow graph, different graph coverage criteria will
correspond to:

I Node coverage: Execute every statement
(in fact, node coverage is stronger, since one statement may
expand to multiple nodes)

I Edge coverage: Execute every branch

Note that complex boolean conditions in branches are still treated as
a single node. (Effectively, the boolean condition is a “black box”.)

Logic coverage conditions (used, for instance, in avionics) look at
these conditions in finer-grained detail.

22 / 22


	Graph-based testing criteria

