CITS5501 Software Testing and Quality Assurance
Semester 1, 2022
Week 7 exercise — solutions

Please refer to the CITS5501 website and the LMS for details of the due date and
submission procedure.

Test plan for the isHex() method

Usually when writing integers, we represent them in base 10, but it can be convenient
sometimes to write them in other bases, such as base 8 (octal) or base 16 (hexadecimal).

In software engineering, when an integer is represented in some base other than 10, the
representation will usually have a prefix added to it to show what base it is in — for
instance, “0x” for hexadecimal, or “0o” for octal.

A method isHex () that your team is testing has the following signature and Javadoc
documentation:

10

11

12

13

14

15

16

17

18

19

20

/** Determine whether a String <code>s</code> represents an integer
* 4n hezxadecimal notation.

*

* To represent an integer in hexadecimal notation, a string must
* satisfy all the following conditions:

*

* — It must start with the letters "Oz"

* — All the characters after the initial two must be either

* digits (i.e. in the range '0'-'9') or lowercase letters

*  from 'a' to 'f'

* - The string must have no leading zeroes — that is, the first
* character after the "Oz" must be either a digit from '1' to
* '9', or a letter from 'a' to 'f'.

*

* @param s A string to be tested

*

* @return Returns true if <code>s</code> represents an integer in
* hexzadecimal notation, and false if it does not.

*/

public static boolean isHex(String s);

A colleague of yours is devising a test plan for the isHex method by applying the Input
Space Partitioning technique. They have identified that in this scenario, isHex is the only


https://en.wikipedia.org/wiki/Octal
https://en.wikipedia.org/wiki/Hexadecimal

relevant function, and that it has no parameters other than the String s (and you may
assume these decisions of theirs are correct).

They have proposed several characteristics to be used in partitioning the input space:

-

.

Test plan excerpt — ISP characteristics for isHex(String s)

a. Is the String s equal to null?
e Divides the input space into 2 partitions: situations where s is null, and
those where it is not.

The following characteristics sub-partition the second partition of characteristic (a)
(i.e., the situation where s is not null).

b. Does the String s start with an 0, with an 0x, or with some other sequence of
characters?
e Produces 3 partitions: Strings starting with 0, Strings starting with 0x,
and other Strings.
c. Does s contain any characters besides the digits '0' through '9' and the letters
'a' to 'f'?
e Produces 2 partitions: Strings which contain only these characters, and
those which do not.
d. Before the first non-zero hex digit (i.e. character in the range '1'-'9"' or
'a'—'f"'), does the digit ‘0" appear zero times, or once, or twice or more?
o Produces 3 partitions: Strings where 0 appears zero times, Strings where
it appears once, and String where it appears twice or more.

Answer the following questions about your colleague’s proposed characteristics:

1. Has your colleague made a good choice of characteristics? Justify your answer. If
you would modify or drop any of your colleague’s characteristics, state which of
these you would do, and why. (Max. 500 words; 10 marks)

2. Are there additional characteristics you recommend be used? (Assume that any

changes you have recommended for question (1) have now been made.) If there are,
you may suggest up to two, explaining your reasoning. If there are not, explain why

not. (Max. 500 words; 5 marks)

Sample proficient answer:
Q. 1 — choice of characteristics
No, the characteristics suggested are a fairly poor choice.

Characteristic (a) is a poor choice of characteristic. It is normally assumed for Java
methods that their parameters must not be null unless the method documentation
explicitly says they can be. Writing tests with null as a test value will not tell us
anything interesting about the method under test — they will just tell us that the
Java runtime does indeed throw NullPointerExceptions when trying to operate on
null values. The characteristic should be dropped.

Characteristic (b) is a poorly designed characteristic, because it does not result in a




partitioning. The set of “Strings that begin with 0x” is a subset of the set of “Strings
that begin with 0”; therefore, the so-called partitions overlap and fail the test of being
“pairwise disjoint”. I would modify the characteristic. Firstly, I would specify that it
only applies to Strings with two or more letters in them (i.e. it’s a sub-characteristic).
Secondly, I would state the characteristic as being “Are the first two letters of the
string 0x, or something else?”, which gives rise to 2 partitions. The characteristic now
gives rise to a proper partitioning.

c. Does s contain any characters besides the digits 0 through 9 and the letters 'a'
to '£'?
e Produces 2 partitions: Strings which contain only these characters, and
those which do not.

Characteristic (c) is a poor characteristic, because valid hex Strings should contain
characters besides the digits 0 through 9 and the letters 'a' to 'f' — namely, they
should contain an 'x' as the second character. Using this characteristic tells us
nothing useful about whether the isHex method works. A better characteristic would
be if we (i) firstly, specified this is a sub-characteristic of Strings with at least two
characters, whether the first two letters are “0x”, and (ii) secondly, phrased the
characteristic as “After the first two characters, does s contain any characters besides
the digits 0 through 9 and the letters 'a' to 'f'?” The rephrased characteristic now
provides a more useful partitioning of s.

Characteristic (d) is partly okay, except that it should apply only to characters after
the first two. Fwvery valid hex string should in fact have the digit '0' appearing as
the first character, so that’s not a useful partitioning. Similar to characteristic (c), we
should make this a sub-partitioning of Strings with at least 2 characters and a correct
prefix.

Sample proficient answer:
Q. 2 — additional characteristics

I would recommend having a characteristic “Does the string contain at least two
letters?”. Or, alternatively, incorporating that into characteristic (b) —i.e. make (b)
be the characteristic “Does the String have at least two letters, of which the first two
are '0' and 'x'?” That’s a valid partitioning (it divides the input space into two),
and then characteristics (c¢) and (d) can be made sub-partitions of the “yes” case for
characteristic (b).

Other than that, the proposed characteristics seem to cover everything that is necessary.
The method documentation sets out three criteria which distinguish valid from invalid
hex strings, and we have used all three criteria in our test plan.

General comments

You may have noticed that the specification for the isHex method has some
peculiarities, compared with how you personally might have designed a method
intended to distinguish valid hexadecimal representations of integers from invalid




ones.

For instance, the rule against leading zeroes means that zero, itself, is not representable!
0x0 should not be accepted as valid.

But when it comes to writing tests for the method, the documentation you are given
is all you are permitted to work off. (Else, what exactly are you testing? Some
imaginary, other method that you have invented.)

Common mistakes

Below are listed some common mistakes made when answering questions of this sort.

Failure to remove inappropriate characteristics

« null-ness. As slide 18 of lecture 4b (https://cits5501.github.io/lectures/le
ct04b--isp.pdf) points out, unless the documentation for a method explicitly
states that parameters can be null, it’s a precondition of Java methods that
null parameters may not be passed (and it’s undefined what happens if a null
is passed). Therefore, null-ness is an inappropriate characteristic to use.

Incorrect understanding of what a method specification is

When writing test plans (or critiquing them, as in this case), it’s important that you
test exactly the method that is specified — not some other imaginary method you’ve
invented. The purpose of testing is to check whether the described expectations of
behaviour are met — no more, no less.

So behaviour not mentioned in the method description is irrelevant, and discussing
irrelevant factors is penalized. Such behaviour or factors include:

o« Maximum size of an int in Java. The documentation for isHex doesn’t
say anything about whether the String is, in fact, going to be parsed into a Java
int, or whether it is going to be stored in an int, or even used in a Java data
structure or program at all. So introducing characteristics based on the size of
an int is incorrect.

It is quite possible to store arbitrarily large integers in Java.  The
java.math.BigInteger class is available for this; it can store an integer as
large as your computer’s entire available memory if need be. If the checked
String was intended to later be passed as an integer, this could be done using
the BigInteger class; it’s incorrect to assume the size of an int is relevant
here.

Not reading the question

The question asks you one thing: are your colleague’s characteristics good ones?
Answering other questions indicates a failure to read or understand the question, and
will usually be penalized on the grounds that irrelevant factors are discussed.



https://cits5501.github.io/lectures/lect04b--isp.pdf
https://cits5501.github.io/lectures/lect04b--isp.pdf

In particular, the question does not ask about:

o Test coverage. You are not asked to assess test coverage here, so any mention
of coverage criteria (including “base choice” criteria) is irrelevant. Make sure
you read the question carefully and do only what is asked.

o Selecting test values and creating test cases. In the questions given, you
are not asked to create any test cases, nor to select test values — so any mention
of those topics is irrelevant. Make sure you read the question carefully and do
only what is asked.

o Implementing the tests as Java code. You are not asked to actually
implement any tests. Any Java code included will likely be ignored when
marking.

Repetition of irrelevant definitions

Answers that begin with a recitation of principles or definitions from the slides or
textbook tend not to receive many marks. (For instance, an answer that begins: “Input
Space Partitioning is a technique for modelling software components as functions and
deriving tests from the model. This is done by dividing the input space into partitions
using characteristics. Partitions must: (a) be pairwise distinct, and (b) ... etc”)

For one thing, you can assume that your markers are familiar with definitions and
don’t need to be reminded of them. (Know your audience.)

For another, this doesn’t show an ability to justify your particular recommendations,
by appealing to particular guidelines or factors.

Lastly, the question doesn’t ask you to provide a list of definitions; make sure you
read the question carefully and do only what is asked.

Poor or poorly justified reasons

o Appeals to authority. When justifying an answer, never do so by appealing
to the fact that “the lecture slides say so”. (Or, “the lecturer says so”, or “the
textbook says so0”.)

In the lectures, I take care to explain why it’s a good idea to take one approach
over another, in terms of how it will contribute to software quality. Those are
the reasons why you should favour one approach over another; not “because
the lecture slides say so”. (If you believe you've found a counterexample to this,
please do let me know.)

Poor conciseness, clarity, and legibility

It takes little effort to make your answers clear and legible, and only a little more to
keep them concise.

e Do make sure you clearly separate your answer into paragraphs. This makes it
easier for a marker to read and understand.




e Do add headings or sub-headings if necessary, to show how your answer is
structured and what topics you have addressed.
e Do check your spelling. Poor spelling and grammar will result in fewer marks

for clarity and legibility.




	Test plan for the isHex() method
	Failure to remove inappropriate characteristics
	Incorrect understanding of what a method specification is
	Not reading the question
	Repetition of irrelevant definitions
	Poor or poorly justified reasons
	Poor conciseness, clarity, and legibility


